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Abstract

Tension members with a zero rest length allow the construction of tensegrity struc-
tures that are in equilibrium along a continuous path of configurations, and thus
exhibit mechanism-like properties; equivalently, they have zero stiffness. The zero-
stiffness modes are not internal mechanisms, as they involve first-order changes in
member length, but are a direct result of the use of the special tension members.
These modes correspond to an infinitesimal affine transformation of the structure
that preserves the length of conventional members, they hold over finite displace-
ments and are present if and only if the directional vectors of those members lie on
a projective conic. This geometric interpretation provides several interesting obser-
vations regarding zero stiffness tensegrity structures.
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1 Introduction

This paper will describe and analyse a new and special class of ‘tensegrity’
structures that straddle the border between mechanisms and structures: al-
though member lengths and orientations change, the structures can be de-
formed over large displacements whilst continuously remaining in equilibrium.
In other words, they remain neutrally stable, require no external work to de-
form, and hence have zero stiffness. Although zero stiffness is uncommon in the
theory of stability, several examples exist. Tarnai (2003) describes two systems
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(a) (b) (c)

Fig. 1. Static balancing: the three structures shown are in equilibrium for any po-
sition of the rigid bar, as long as in (a) the masses (black circles) are in inverse
proportion to the distance from the pivot and in (b) and (c) the springs are ze-
ro-free-length springs with appropriately chosen stiffness.

that display zero stiffness, respectively related to bifurcation of equilibrium
paths, and to snap-through type loss of stability of unloaded structures in a
state of self-stress. These structures require specific external loads or states of
self-stress to exhibit zero stiffness. The key to the structures discussed in this
paper, however, is the use of tension members that, in their working range, ap-
pear to have a zero rest length — their tension is proportional to their length.
Such members are not merely a mathematical abstraction; it is for instance
possible to wind a close-coiled spring with initial tension that ensures, when
the spring is extended, that the exerted force is proportional to the length.

The utility of zero-free-length springs was initially exploited in the design of
the classic ‘Anglepoise’ lamp (French and Widden, 2000), but is more generally
applied in the field of static balancing (Herder, 2001) — see Figure 1. To
those unfamiliar with static balancing, it may be surprising that systems such
as those shown in Figures 1(b) and 1(c) are indeed in equilibrium for any
orientation of the rigid bar. However, simple calculations, such as those shown
in French and Widden (2000) will show that, if zero-free-length springs with
an appropriate stiffness are used, this is indeed the case. Statically balanced
systems are in equilibrium in every configuration in their workspace; every
configuration has the same potential energy, and the system hence has zero
stiffness. As the only forces required to move a statically balanced system
are those to overcome friction, and to accelerate and decelerate the system,
statically balanced systems are used for energy-efficient design in, for instance,
robotics and medical settings. Herder (2001) discovered some basic examples
of statically balanced tensegrities, which formed the inspiration for the current
research.

‘Tensegrity’ is a term that is not consistently defined in literature, see Motro
(1992) for a discussion. Here we take it to mean free-standing prestressed
pin-jointed structures, which are in general both statically and kinematically
indeterminate. The state of self-stress ensures that each member carries a
non-zero, purely tensile or compressive load, under absence of external loads
and constraints. Previously, the analysis of tensegrity structures, either by
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a structural mechanics approach (e.g. Pellegrino and Calladine, 1986) or a
mathematical rigidity theory approach (e.g. Connelly and Whiteley, 1996),
has been concerned with whether or not a structure is stable. We shall only
consider structures that, were they constructed with conventional tension and
compression members, would be prestress stable (i.e. have a positive-definite
tangent stiffness matrix, modulo rigid-body motions). The novel feature of
this paper is that we then replace some or all of the tension members with
zero-free-length springs, in search of zero-stiffness modes.

The zero-stiffness tensegrities described in this paper walk a fine line between
structures and mechanisms. Here we shall refer to them as tensegrity struc-

tures, as we will be using the tools of structural engineering and not mech-
anism theory. For other purposes, the term tensegrity mechanisms might be
more applicable. Practical applications of this new class of structure will most
likely also take place on the borderline of structures and mechanisms, such
as, for example, deployable structures which are in equilibrium throughout
deployment.

There are clear hints to the direction taken in this paper in the affine transfor-
mations considered by Connelly and Terrell (1995) or the ‘tensegrity similarity
transformation’ considered by Masic et al. (2005). Unlike in those papers, here
the affine transformations are translated from a mathematical abstraction into
a real physical response of structures that can be constructed.

The paper is laid out as follows. Section 2 recapitulates the equilibrium and
stiffness analysis of prestressed structures. In particular it describes the conse-
quences of using zero-free-length springs by means of a recent formulation of
the tangent stiffness matrix. Section 3 introduces affine transformations and
shows that affine modes which preserve the length of the conventional members
are statically balanced zero-stiffness modes valid over finite displacements. The
link between the projective conic and the presence of length-preserving affine
transformations is discussed in section 4. In section 5, an example analysis
of a classic tensegrity structure fitted with zero-free-length springs is used to
illustrate the theory.

2 Equilibrium and stiffness of prestressed structures

This section lays the groundwork for the coming sections, by first briefly re-
capitulating the tensegrity form-finding method from rigidity theory, followed
by a description of the tangent stiffness matrix that clearly shows the effects
of using zero-free-length springs. The section is concluded by a discussion of
zero-stiffness modes in conventional tensegrity structures.
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2.1 Equilibrium position

This paper is primarily concerned with the stiffness of a tensegrity structure
in a known configuration, and not with form finding, i.e. finding an initial
equilibrium configuration (Tibert and Pellegrino, 2003). Nevertheless, a brief
description of form finding will be given; there are interesting and useful par-
allels between the stiffness of a prestressed structure and the energy method

of rigidity theory (or, equivalently, the engineering force density method) used
in form finding.

The energy method in rigidity theory considers a stress state ω to be a state
of self-stress if the internal forces at every node sum to zero, i.e. the following
equilibrium condition holds at each node i

∑

j

ωij (pj − pi) = 0 (1)

where pi are the coordinates for node i, and ωij is the tension in the member
connecting nodes i and j, divided by the length of the member; ωij is referred
to as a stress in rigidity theory, but is known in engineering as a force density

or tension coefficient. If all the nodal coordinates are written together as a
column vector p, pT = [pT

1
,pT

2
, . . . ,pT

n ], the equilibrium equations at each
node can be combined to obtain the matrix equation

Ω̃p = 0 (2)

where Ω̃ is the stress matrix for the entire structure. In fact, because equation 1
consists of the same coefficients for each of d dimensions, the stress matrix can
be written as the Kronecker product of a reduced stress matrix Ω and a d-
dimensional identity matrix Id

Ω̃ = Ω ⊗ Id. (3)

The coefficients of the reduced stress matrix are then given, from equation 1,
as

Ωij =



























−ωij = −ωji if i 6= j, and {i,j} a member,
∑

k 6=i ωik if i = j,

0 if there is no connection between i and j.

(4)

Although the stress matrix is here defined entirely by equilibrium of the struc-
ture, we shall see the same matrix recurring in the stiffness equations in sec-
tion 2.2. This dual role of the stress matrix allows the combination and ap-
plication of insights from rigidity theory — where the stress matrix has been
the object of study — to engineering stiffness analysis.
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Form-finding methods require the symmetric matrix Ω to have a nullity N ≥
d+1, and thus for Ω̃ a nullity N ≥ d(d+1) 1 . If the nullity requirement is not
met, the only possible configurations of the structure will be in a subspace of a
lower dimension. For example, form finding in 3 dimensions would only be able
to produce planar equilibrium configurations (Tibert and Pellegrino, 2003).
The significance of this requirement will be further elucidated in section 3,
when affine transformations are introduced. If Ω̃ has a nullity equal to d(d+1),
we shall describe it as being of maximal rank.

2.2 Tangent stiffness matrix

Stability analysis considers small changes from an equilibrium position. For a
prestressed structure account must be taken not only of the deformation of the
elements and the consequent changes in internal tension, but also of the effects
of the changing geometry on the orientation of already stressed elements.
Consider an infinitesimal displacement d, and force perturbation f , where
dT = [dT

1
,dT

2
, . . . ,dT

n ], fT = [fT
1
, fT

2
, . . . , fT

n ], and di, fi are the displacement
and force perturbation at node i. The column vectors d and f are related by
the tangent stiffness matrix Kt,

Ktd = f . (5)

The tangent stiffness matrix is well-known in structural analysis, and many dif-
ferent formulations for it exist (e.g. Murakami, 2001; Masic et al., 2005). Differ-
ent formulations with identical underlying assumptions will produce identical
numerical results, but may provide a different understanding of the stiffness.
The formulation used in this paper is derived by Guest (2006); it is written
as:

Kt = K̂ + Ω̃

= AĜAT + Ω̃ (6)

where Ω̃ is the stress matrix described earlier and K̂ is the modified material

stiffness matrix. The modified material stiffness matrix is written in terms of
A, the equilibrium matrix for the structure, and Ĝ, a diagonal matrix whose
entries consist of the modified axial stiffness for each of the members. The
modified axial stiffness ĝ is defined as

ĝ = g − ω (7)

where g is the conventional axial stiffness and ω the tension coefficient. For
conventional members, ĝ will be little different from g. It will certainly always

1 The nullity of a square matrix is equal to its dimension minus its rank.
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be positive, and hence the matrix Ĝ will always be positive definite. However,
for a zero-free-length spring, because the tension t is proportional to the length,
t = gl, the tension coefficient is equal to the axial stiffness, ω = t/l = g, and
the modified axial stiffness ĝ = g − ω = 0. Thus structures constructed with
zero-free-length springs will have zeros along the diagonal of Ĝ corresponding
to these members, and Ĝ will now only be positive semi-definite.

Normally, a zero axial stiffness would be equivalent to the removal of that
member (Deng and Kwan, 2005). This is not the case for the zero modified
axial stiffness of zero-free-length springs, because the contribution of the mem-
ber is still present in the stress matrix Ω̃. This leads to the observation that
for zero-free-length springs the geometry (i.e. the equilibrium matrix A) is
irrelevant and only the tension coefficient and member connectivity (i.e. the
stress matrix Ω̃) define their reaction to displacements.

2.3 Zero-stiffness modes and internal mechanisms

The main interest of this paper lies in displacements that have a zero stiffness;
in other words, displacements that are in the kernel, or nullspace, of the tan-
gent stiffness matrix. A zero tangent stiffness for some deformation d requires,
from equation 6, either that K̂d = −Ω̃d, or that both K̂d and Ω̃d are zero.
We will concentrate on the second case, i.e. d lies in the nullspace of both K̂

and Ω̃, but will briefly discuss the other possibility in section 3.5.

For a conventional structure, as Ĝ is positive definite, the nullspace of K̂ =
AĜAT is equal to the nullspace of AT , and hence ATd = 0. The matrix
C = AT is the compatibility matrix (closely related to the rigidity matrix in
rigidity theory) of the structure, and the extension of members e is given by
Cd = e; i.e. e = 0 for a zero-stiffness mode. Thus, for a conventional structure
a zero tangent stiffness requires the deformation to be an internal mechanism:
a deformation that to first order causes no member elongation. In addition
Ω̃d must be zero, which implies that the mechanism is not stabilized by the
self-stress in the structure. One obvious mode is that rigid-body displacements
of the entire structure will have no stiffness. However, in general there may
also be other non-stiffened (higher-order) infinitesimal, or even finite, inter-
nal mechanisms present (see e.g., Pellegrino and Calladine, 1986; Kangwai
and Guest, 1999). Infinitesimal mechanisms may eventually stiffen due to the
higher-order elongations of members, but finite internal mechanisms have no
stiffness over a finite path. If a structure is prestress stable, all displacements
have a positive stiffness. This means that, modulo rigid-body motions, all
eigenvalues of the tangent stiffness matrix are positive and the matrix is thus
positive definite.
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Some of the above observations change when a structure includes zero-free-
length springs, which have modified axial stiffness ĝ = 0. A key observation
is that the nullspace of K̂ = AĜAT is no longer the same as the nullspace
of AT , as Ĝ is now only positive semi-definite. The increased nullity of the
modified material stiffness matrix K̂ is of great importance to this study, as it
will prove to be key to finding the desired zero-stiffness modes (see section 3).
Note, however, by contrast, that the form of the stress matrix Ω̃ is unchanged
when zero-free-length springs are introduced to the structure.

We introduce the term ‘statically balanced zero-stiffness mode’ to distinguish
between zero-stiffness modes found in conventional tensegrity structures, such
as internal mechanisms and rigid-body motions, and zero-stiffness modes in-
troduced by the presence of zero-free-length springs. In contrast with internal
mechanisms, these latter modes involve first-order changes in member length,
and thus energy exchange among the members.

3 Affine transformations and zero-stiffness modes

This section first introduces the concept of affine transformations, and in-
finitesimal affine modes, before showing that affine modes that preserve the
length of ‘conventional’ members are statically balanced zero-stiffness modes
that are valid over finite displacements. It shall further be argued that for pre-
stress stable tensegrity structures with a positive semi-definite stress matrix
of maximal rank, these are the only possible zero-stiffness modes.

3.1 Affine transformations

As described in section 2.1, the equilibrium position of a freestanding tenseg-
rity structure for a given state of self-stress is given by Ω̃p = 0. Under an affine

transformation of the nodal coordinates p this condition still holds (Connelly
and Whiteley, 1996; Masic et al., 2005), and hence the new geometry is also
in equilibrium for the same set of tension coefficients.

Affine transformations are linear transformations of coordinates (of the whole
affine plane onto itself) preserving collinearity. Thus, an affine transformation
transforms parallel lines into parallel lines and preserves ratios of distances
along parallel lines, as well as intermediacy (Coxeter, 1989, pp. 202). Consider
nodal coordinates p̄i as an affine transformation of the original coordinates
pi. This transformation can be generally described by

p̄i = Upi + w
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(a)

(b)

(c) (d)

(e)

Fig. 2. The independent affine transformations of an object (a) in 2D space are: (b)
two translations, (c) one rotation, (d) one shear, (e) two dilations. The total of 6
transformations complies with the d(d + 1) formula for d = 2.

where in d-dimensional space U is an invertible d-by-d matrix, and w is a
d-component column vector. This provides a total of d(d + 1) independent
affine transformations. Affine transformations are well-known to engineers,
but under a different guise. Suppose we split the matrix U into an orthogonal
component US, and a component UQ, such that U = US + UQ. Then half
of the d(d + 1) affine transformations is constituted by w and US, and these
are rigid-body motions (e.g. 6 rigid-body motions in 3-dimensional space).
The other half, formed by UQ, is equivalent to the basic strains found in
continuum mechanics: shear and dilation. For instance, for a 3-dimensional
strain, infinitesimal affine deformations give the six independent strain quan-
tities (exx, eyy, ezz, exy, exz, eyz) (Love, 1927). For two dimensions, a complete
basis set of affine transformations is shown in Figure 2.

It is obvious that the equilibrium of a tensegrity structure holds for rigid-body
motions, but it can also be straightforwardly shown for other affine trans-
formations. Consider the equilibrium equation (1) written in the deformed
coordinates p̄

∑

j

ωij (p̄j − p̄i) =
∑

j

ωij

(

Upj + w − Upi − w
)

=
∑

j

ωij

(

Upj − Upi

)

= U
∑

j

ωij (pj − pi) = 0. (8)

Thus the affinely-deformed configuration is in equilibrium. This knowledge
can be used to great advantage in form finding to obtain new equilibrium
shapes (Masic et al., 2005), but it also has important consequences for static
balancing and the study of zero-stiffness modes. The above also provides an
alternative view of the N ≥ d(d + 1) nullity requirement for Ω̃ found in form
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finding: there must be at least d(d + 1) affine transformations in the kernel of
Ω̃ if a solution for the form finding is to be found in d-space.

3.2 Infinitesimal affine modes

So far we have only considered discrete affine transformations of coordinates,
but we are really interested in continuous displacement paths and infinitesimal
displacement vectors that are tangent to this path. When every configuration
on the path is defined purely by an affine transformation of an original con-
figuration, then we describe a tangent displacement vector to that path to be
an infinitesimal affine mode.

Consider that there is path-length parameter λ, and the position of node i is
given by pi(λ), where the original configuration pi = pi(0). If every config-
uration is an affine transformation of the original configuration, then we can
write at each node i,

pi(λ) = U(λ)pi + w(λ) (9)

where U(0) = I and w(0) = 0. To first order in λ, the parameters in equation 9
can be written as U(λ) = I + λV and w = λx. The infinitesimal affine mode
of node i at the original configuration is then given by

di =
dpi

dλ

∣

∣

∣

∣

∣

λ=0

= Vpi + x (10)

As for affine transformations of coordinates described in section 3.1, the affine
mode described by V and x can be split into infinitesimal rigid-body motions,
and infinitesimal distortional components. Here we split V into its symmetric
component, VQ and skew-symmetric component, VS.

V = VQ + VS ; VQ =
V + VT

2
, VS =

V − VT

2
(11)

The infinitesimal rigid-body motions are then described by VS (rotations) and
x (translations), and the distortional components are described by VQ.

Note that an infinitesimal affine mode is in the nullspace of the stress matrix
for the structure, Ω̃. This can straightforwardly be proved along similar lines
to equation 8, or simply by noting that because Ω̃p(λ) = 0 for all λ, then

d

dλ
(Ω̃p(λ)) = Ω̃

dp(λ)

dλ
= 0 (12)

and
dp(λ)

dλ

∣

∣

∣

∣

∣

λ=0

= d (13)
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where d is an infinitesimal affine mode, which, from equation 12 therefore lies
in the nullspace of Ω̃. If the stress matrix is of maximal rank, the nullspace is
of dimension d(d+1), and is hence fully described by the d(d+1) independent
infinitesimal affine modes defined by equation 10.

It should be noted that deforming an actual physical structure under an ar-
bitrary affine transformation will generally speaking require work, will thus
change the internal tensions, and will hence change the stress matrix. The con-
dition under which an infinitesimal affine mode requires no work, and therefore
has zero stiffness, is discussed next.

3.3 Statically balanced zero-stiffness modes

Recall that a structure has a zero stiffness if a given infinitesimal displacement
vector d is in the nullspace of the tangent stiffness matrix Kt, i.e.,

Ktd = K̂d + Ω̃d = AĜATd + Ω̃d = 0 (14)

We focus here on the situation where both AĜATd and Ω̃d are zero. We
shall exclude internal mechanisms by only considering tensegrity structures
that when built with solely conventional elements would be stable for the
given state of self-stress. Conventional elements are here understood to be
tensile or compressive members that have a positive modified axial stiffness.
Consequently, any zero-stiffness modes would be a result of the use of zero-
free-length springs.

As shown in section 3.2, infinitesimal affine modes lie in the nullspace of Ω̃.
For a conventional structure these modes, that are not rigid-body motions,
are stiffened by the modified material stiffness matrix K̂. For structures with
zero-free-length springs, however, the positive semi -definiteness of Ĝ and the
resulting increased nullity in K̂ may result in new zero-stiffness modes. The
key therefore lies in understanding the solutions to K̂d = AĜATd = 0.

Consider an infinitesimal displacement d which is, to first order, length-preserving
for the conventional members. Then e = ATd will have zero components for
those conventional members, but may have non-zero components for the zero-
free-length springs. If e is now premultiplied by Ĝ, Ĝe = ĜATd, the resultant
vector will also have zero components for the zero-free-length springs due to
the zero modified axial stiffness on the diagonal of Ĝ. Thus, a displacement
d that preserves the length of conventional elements will satisfy ĜATd = 0

and will hence be in the nullspace of AĜAT .

From the above it now clearly follows that for an infinitesimal affine mode
that preserves the length of conventional members, both K̂d and Ω̃d are zero

10



Fig. 3. Example of a 2D statically balanced structure consisting of two unconnected
bars of differing lengths, and four zero-free-length springs of equal stiffness. When
the bars are rotated with respect to each other, they remain in equilibrium and
their movement thus has zero stiffness. In this example it is clear that the statically
balanced mode is a combined shear and scale operation which preserves the bar
lengths. Figure adapted from Herder (2001).

and there exists a statically balanced zero-stiffness mode. This is illustrated
by the simple statically balanced structure shown in Figure 3.

We have thus far only considered infinitesimal displacements. This leads to the
question of whether the statically balanced zero-stiffness modes are actually
tangent to a finite zero-stiffness path. The next section will show that this is
indeed the case.

3.4 Finiteness of statically balanced zero-stiffness modes

We will show that, once a structure is known to have a statically balanced
zero-stiffness mode, then following any non-degenerate affine transformation
of the coordinates of the structure, the new structure will also have a related
statically balanced zero-stiffness mode.

Assume that we have an affine mode where for each node i,

di = Vpi (15)

where the mode preserves the length of conventional members, i.e. for every
conventional member {i, j}, the infinitesimal relative displacement dj − di is
orthogonal to the direction of the member, pj − pi,

(pj − pi)
T (dj − di) = (pj − pi)

TV(pj − pi) = 0. (16)

We know from section 3.3 that this is a statically balanced zero-stiffness mode.

Now consider an affine transformation, so that the new structure has nodal
coordinates p̄i. For brevity, we will neglect rigid-body motions, which clearly
preserve zero-stiffness, so that,

p̄i = UQpi. (17)
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Where we assume that the transformation is non-degenerate, and so UQ is in-
vertible — we are not squashing the structure into a lower dimension. We shall
show that d̄i = U−T

Q di (where U−T
Q = (UT

Q)−1 = (U−1

Q )T ) is an affine mode
of the transformed structure, that again preserves the lengths of conventional
members.

It is straightforward to show that d̄i is an affine mode, as it can be written in
terms of the new coordinates p̄i in the form given by equation 10,

d̄i = U−T
Q di = (U−T

Q V)pi = (U−T
Q VU−1

Q )p̄i. (18)

When considering the nodal coordinates of bar {i, j} after the affine transfor-
mation, then

p̄j − p̄i = UQ(pj − pi) (19)

and with the infinitesimal relative displacements in the new configuration
given as

d̄j − d̄i = U−T
Q (dj − di) (20)

then if we now consider the orthogonality equation (16) in the transformed
configuration,

(p̄j − p̄i)
T (d̄j − d̄i) = 0 (21)

and then rewrite in terms of the original configuration

(pj − pi)
TUT

QU−T
Q V(pj − pi) = 0 (22)

we observe that UT
QU−T

Q cancels out, and thus the orthogonality also holds in
the transformed configuration. This concludes our proof that if there exists an
affine mode that preserves the length of conventional members in the original
configuration, then there will again exist such an affine mode in any affinely
transformed configuration. It clearly extends to proving the finiteness of the
found statically balanced zero-stiffness mode, as in the affinely transformed
configuration there will again exist such a mode, and thus the infinitesimal
zero-stiffness modes connect to form a finite zero-stiffness path.

It is interesting to remark that throughout the finite affine displacement path
of a zero stiffness tensegrity structure, the stress matrix, and therefore the
tension coefficients of each of the members, will remain constant. For zero-
free-length springs their tension coefficient is equal to their spring stiffness,
and will therefore obviously remain constant. For conventional members, how-
ever, the only way their tension coefficient can remain constant is when their
length remains unchanged. By this reasoning we again arrive at our previous
requirement for the statically balanced zero-stiffness modes.
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3.5 Are affine modes the only zero-stiffness modes?

This section describes the three conditions under which the infinitesimal affine
modes that preserve the length of conventional members are the only possible
zero-stiffness modes for the structure.

We firstly require that the structure is prestress stable when made from con-
ventional members. This excludes the possibility of unstiffened internal mecha-
nisms (where to first order the structure deforms without any members chang-
ing length). Secondly, we require that the stress matrix is of maximal rank, as
described in section 2.1. This ensures that the only vectors in the nullspace of
the stress matrix are infinitesimal affine modes. Thirdly, we require that the
stress matrix is positive semi-definite. This ensures that there are no negative
eigenvalues in the stress matrix that can cause zero stiffness by the contribu-
tions of K̂ and Ω̃ cancelling each other out: K̂d = −Ω̃d. Any negative eigen-
values in the stress matrix are generally considered undesirable and should be
avoided when designing tensegrity structures. In fact these requirements are
not very restrictive: they describe ‘superstable’ tensegrities (Connelly, 1999),
and these include most ‘classic’ tensegrity structures.

4 Length-preserving affine transformations

In the previous section it has been shown that an affine mode preserving the
length of conventional members is a statically balanced zero-stiffness mode.
In this section we will show that such a transformation exists if and only
if the directions of the conventional members lie on a projective conic. This
geometric interpretation provides several interesting observations regarding
zero stiffness tensegrity structures.

4.1 Length-preserving affine transformation and projective conics

In order to understand under which circumstances the length of a member
increases, decreases or stays the same under an affine transformation, we shall
investigate the squares of the lengths of member {i, j} under the affine trans-
formation given by p̄i = Upi + w, where U is an invertible d-by-d matrix, w

a d-component column vector, and pi,pj are the nodal coordinates:

13



L2 − L2

0
= |(Upj + w) − (Upi + w)|2 − |pj − pi|2

= (pj − pi)
TUTU(pj − pi) − (pj − pi)

T Id(pj − pi)

= (pj − pi)
T [UTU − Id](pj − pi)

=vTQv

where Id denotes the d-dimensional identity matrix, and v = (pj − pi) is the
member direction. From this calculation it is clear that the symmetric matrix
Q = UTU − Id and its associated quadratic form determine when member
lengths increase, decrease or stay the same. We are interested in the situation
where vTQv = 0.

It is obvious that a rigid-body motion will preserve the length of all members.
This also follows clearly from the equation above, as an orthogonal matrix US

will by definition give the identity matrix, UT
SUS = Id, and will thus satisfy

the equation, because Q = 0. For the distortional affine transformations, we
have to take a closer look at the quadratic form of Q. For the case of d = 3,
with directions vT = [vx vy vz] and components of the symmetric Q given as
qkl = qlk, this would take the following form

v2

xq11 + v2

yq22 + v2

zq33 + 2vxvyq12 + 2vxvzq13 + 2vyvzq23 = 0. (23)

Equation 23 describes the surface of a projective conic (Brannan et al., 1999).
We shall rephrase by stating that a set of directions defined by

C = {v ∈ E
d |vTQv = 0} (24)

forms a projective conic. This conic is clearly defined since scalar multiples of a
vector satisfy the same quadratic equation, including the reversal of direction
by a negative scalar. In degenerate cases Q could determine a single plane, or
two planes through the origin. However, generally one would expect C to be
the set of lines from the origin to the points of, for example, an ellipse in some
plane not through the origin (see Figure 4).

Supposing D is a set of directions in d-space, then there is an affine trans-
formation p̄i = Upi + w that is not a rigid-body motion and that preserves
lengths in the directions in D if and only if the directions in D lie on a projec-
tive conic. Or conversely, when the directions of certain members (in our case
conventional elements) lie on a conic given by Q = UT U − Id, their length
will remain constant under the affine transformation U. Analogously to sec-
tion 3.2, this can be extended to the infinitesimal affine modes V. In fact, the
conic form was already visible in the orthogonality equation (16).

Of interest here are structures where all the conventional member directions
lie on a projective conic, as the corresponding affine transformations will have
zero stiffness. This is for instance clear for the structures shown in Table 1,
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where all the bar directions lie on a conic and the other members are zero-
free-length springs. This leads to the observation that all the rotationally
symmetric tensegrity structures discussed by Connelly and Terrell (1995) can
have zero stiffness, when the cables are replaced by appropriate zero-free-
length springs.

4.2 Number of zero-stiffness modes

Using the conic form, the number of independent length-preserving affine
transformations, and thus zero-stiffness modes, of a structure can be deter-
mined. It is convenient to first consider a conic section, as shown in Figure 4.
It holds that five points in a plane — no three of which collinear — uniquely
determine a conic (Brannan et al., 1999). This follows from the fact that a
conic section is a quadratic curve. If fewer points are given, the conic is no
longer uniquely defined and there exists more than one quadratic curve, and
thus projective conic, that satisfies the points. In fact there are infinitely many
solutions, but the number of independent conics is linked to the number of
extra points needed for uniqueness.

To provide a more thorough analysis of the possible projective conics of a
given structure, consider writing equation 23 simultaneously for each of the
conventional members in a structure. If a structure has n conventional mem-
bers, with member directions vT

i = [vxi vyi vzi], this gives the following matrix
equation:















v2

xi v2

yi v2

zi 2vxivyi 2vxivzi 2vyivzi
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...
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xn v2
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zn 2vxnvyn 2vxnvzn 2vynvzn
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q23
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0
...

0















. (25)

It is now the dimension of the nullspace of the n-by-6 matrix defined in equa-
tion 25 that gives the number of independent conics (an arbitrary scaling of
all of the constants qkl in equation 23 does not define a different conic, and
hence it is not the number of independent solutions to equation 25 that is
important, but the dimension of the subspace of solutions).

If the rank of the matrix is r, the dimension of the nullspace is 6 − r, and
this will be the number of independent conics, and hence the number of zero-
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v1

v2

v3

O

Fig. 4. The intersection of a plane with (one or two nappes of) a cone generates a
conic section, which in nondegenerate cases is a quadratic curve such as an ellipse,
parabola or hyperbola (Weisstein, 1999). The directions vi on the conic project onto
points on the conic section.

Table 1
Number of statically balanced zero-stiffness modes for several rotationally symmet-
ric tensegrity structures. All bar directions lie on a conic, and thus when replacing
all cables by appropriate zero-free-length springs the structures will have zero
stiffness. The number of bar directions on the conic and the number of zero-stiffness
modes fit the counting rule established in section 4.2.

Bar directions on conic 5 4 3

Zero-stiffness modes 1 2 3
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stiffness modes. For structures with more than 5 unique member directions,
that all lie on a single projective conic, the rank will always be 5. For struc-
tures with 5 or less unique member directions, the rank is at most equal to
the number of unique member directions. For many simple tensegrity struc-
tures, merely counting the number of unique member directions will suffice to
determine the number of zero-stiffness modes, without performing any actual
calculations.

4.3 Finite affine modes revisited

In geometry it is known that any conic (section) of specific type (parabola,
hyperbola, ellipse) is affinely congruent to another conic of that type, and all
non-degenerate conics are projectively congruent (Brannan et al., 1999). In
practical terms this means that when affinely deformed, a conic will always
remain a conic. This provides another approach to the finiteness of the length-
preserving affine modes observed in section 3.4. If all conventional member
directions lie on a conic, there exists a length-preserving affine mode which
has zero stiffness. If that mode is followed, the affinely deformed structure will
again lie on a projective conic, and will again have a length-preserving affine
mode with zero stiffness. Consequently, the zero-stiffness mode will be finite.

The proof is straightforward and follows a very similar route to the finite-
ness proof in section 3.4. Supposing that a member direction vi lies on the
projective conic given by vTQv = 0, then considering an affine transformation

p̄i = UQpi,

the member direction in the affinely deformed configuration, v̄i is then given
by:

v̄i = UQvi. (26)

Writing the inverse as vi = U−1

Q v̄i and substituting into the original conic
equation, we now obtain:

v̄T
i U−T

Q QU−1

Q v̄i = 0 (27)

which again satisfies a conic equation in the deformed configuration, and hence
concludes the proof. The new projective conic is described by the symmetric
Q̄ = U−T

Q QU−1

Q .
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5 Example

This section describes the numerical analysis of the classic tensegrity structure
shown in Figure 5. Both the nature and number of the calculated zero-stiffness
modes fit the theory laid down in previous sections. This is further illustrated
by the construction of a physical model.

5.1 Numerical analysis

It is expected that when the cables are replaced by zero-free-length springs,
the structure will have three zero-stiffness modes, and that these modes are
affine modes preserving the length of the three bars. This follows from the
observation that the structure has three independent bar directions, and thus
by section 4.2 there are three independent zero-stiffness modes.

The tangent stiffness of the structure has been found using the formulation of
equation 6 for two different cases. Firstly, with the structure consisting of con-
ventional elements, and secondly, when made from conventional compressive
bars, but using zero-free-length springs as tension members. The equilibrium
configuration has been calculated with the analytical solution of Connelly
and Terrell (1995), and the level of self-stress — and thus the stress ma-
trix — is identical for both cases. All conventional elements have a ‘stiffness’
of EA = 100N, the horizontal springs 1N/m and the vertical springs

√
3N/m.

The internal tension of the structure is uniquely prescribed by these spring
stiffnesses; the stiffness ratio is a property of this structure and is independent
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98

7

65

4

3
2

1

6

5
4

3

2

1

Fig. 5. Rotationally symmetric tensegrity structure. The structure has a circum-
scribing radius R = 1m, height H = 2m and the two parallel equilateral triangles
(nodes 1–3 and nodes 4–6) are rotated π/6 with respect to each other.
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Table 2
Stiffness of each of the eigenmodes of Kt, excluding rigid-body motions, for (a) the
conventional structure and (b) the structure with zero-free-length springs as tension
members. The total stiffness Kt is the sum of the contributions of K̂ and Ω̃.

(a)

Kt (N/m) K̂ (N/m) Ω̃ (N/m)

5.6304 0.0174 5.6130

27.8384 26.1960 1.6424

27.8384 26.1960 1.6424

83.2190 79.1954 4.0236

83.2190 79.1954 4.0236

107.3763 103.0749 4.3014

107.3763 103.0749 4.3014

113.8525 113.5350 0.3175

132.5068 130.4743 2.0325

132.5068 130.4743 2.0325

176.2051 170.2051 6.0000

225.4577 225.3881 0.0696

(b)

Kt (N/m) K̂(N/m) Ω̃ (N/m)

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

0.0000 0.0000 0.0000

5.6703 0.0267 5.6436

5.6703 0.0267 5.6436

5.7899 0.0174 5.7724

6.0000 0.0000 6.0000

6.0000 0.0000 6.0000

6.0000 0.0000 6.0000

75.5997 75.3721 0.2276

75.7193 75.3629 0.3564

75.7193 75.3629 0.3564

of the structure’s radius or height. The results are presented as the stiffness of
each of the eigenmodes (excluding rigid-body motions) of Kt in Tables 2(a)
and 2(b).

For the conventional structure all eigenvalues of the tangent stiffness matrix
are positive, and the stress matrix is of maximal rank. The system has an
internal mechanism, which is stabilized by the state of self-stress. This can be
seen in the first line of Table 2(a), where the K̂ component is almost zero (it
is not precisely zero because the eigenvectors of K̂ and Kt are not precisely
aligned).

When zero-free-length springs are placed in the structure, three new zero-
stiffness modes appear in Kt — the first three rows of Table 2(b) — which are
linearly dependent on the affine transformations for shear and dilation. These
modes can be considered in a symmetry-adapted form (Kangwai and Guest,
1999) as a totally symmetric mode, and a pair of modes that are symmetric
and antisymmetric with respect to a dihedral rotation. The fully symmetric
mode is shown in Figure 6. It is purely dependent on scaling transformations,
and corresponds to a mode where the structure is compressed in the x-y plane
and expands in the z-direction.
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Fig. 6. Fully symmetric zero-stiffness mode, with (a) 3D view, (b) top view and
(c) side view. All displacement vectors are of equal magnitude, and with equal
z-component. In this mode the rotation angle between bottom and top triangle
remains constant throughout the displacement.

In conclusion, the numerical results confirm the theoretical predictions: the
zero-stiffness modes correspond to affine transformations, the bar lengths re-
main constant — ATd returned zero for the bars — and the number of intro-
duced zero-stiffness modes fits the counting rule from section 4.2.

Now imagine taking the structure in Figure 5 and replacing some of the zero-
free-length springs by cables. Then each replaced spring will reduce the number
of zero-stiffness modes by one, up to the point where (after three added cables)
the conventional elements no longer all lie on a projective conic, wherefore the
structure loses its zero stiffness and becomes rigid. This has implications for
the possible application of this type of tensegrity as a type of parallel platform,
where both top and bottom triangle are of fixed lengths (Baker and Crane,
2006). In that situation there will exist no displacement that has zero stiffness,
and it will therefore not be possible to alter position and/or orientation at a
constant potential energy level.

5.2 Physical model

To illustrate that the zero stiffness tensegrity structure is not merely math-
ematical, a demonstration prototype was constructed. It does not make use
of actual zero-free-length springs, but of conventional springs that are at-
tached alongside the bars such that the properties of zero-free-length springs
are achieved. As gravity forces were not taken into account in the calculations,
if perfectly constructed, the prototype should collapse under its own weight.
The friction in the system prevents this from happening, however. As a result
the structure requires some external work to deform, but it will nevertheless
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Fig. 7. The demonstration model deformed in accordance with the symmetrical
zero-stiffness mode. Note that further and other (asymmetric) deformation is still
possible.

remain in equilibrium over a wide range of positions (see Figure 7). Further
details of the construction of this model are described in Schenk et al. (2006).

6 Summary and Conclusions

This paper has investigated the zero-stiffness modes introduced to tensegrity
structures by the presence of zero-free-length springs. It was shown that in
the absence of external loads and constraints, affine modes that preserve the
length of conventional members are statically balanced zero-stiffness modes.
Those modes involve changing spring lengths, but require no energy to move,
even over finite displacements. For prestress stable tensegrities with a positive
semi-definite stress matrix of maximal rank, we further showed that these
are the only possible zero-stiffness modes introduced by the zero-free-length
springs.

It was further shown that such length-preserving affine transformations are
present if and only if the directions of the conventional elements lie on a
projective conic. This geometric interpretation revealed an entire family of
tensegrity structures that can exhibit zero stiffness, and led to a simple method
for determining the number of independent length-preserving affine modes.

By only considering tensegrity structures, the theory in this paper has several
inherent restrictions. Future work will attempt to resolve these aspects, start-
ing with the inclusion of external loads and nodal constraints in the analysis of
pin-jointed structures. The next phase would be to apply the acquired knowl-
edge to non-pin-jointed structures, in order to describe statically balanced
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structures such as the ‘Anglepoise’ lamp in a generic way.

Finally, the construction of the physical model has illustrated that this type of
structure is not yet suited for practical applications. Once difficulties such as
accuracy of spring stiffness ratio, presence of friction and overall complexity of
design have been overcome, a totally new class of structures, or mechanisms,
will be available to engineers.
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